Celebrating Marion's Theorem: Correlations, Construction and Connections

1. Introduction

The large range of variations in triangles has always been fascinating to us. While researching for this competition, we found out about Marion's Theorem. This theorem is typically proven with analytical approaches, but in this case, an attempt at proving the theorem using a deductive approach is made. It inspired us to prove this theorem by only using the properties of triangles and shapes that we have learnt. We also decided to challenge ourselves and expand on her discovery.

Furthermore, while preparing for the American Mathematical Competition this year, we came across a problem on trisecting line segments. ${ }^{1}$ It inspired us to extend Marion's Theorem and apply it to quadrilaterals.

In rectangle $A D E H$, points B and C trisect $\overline{A D}$, and points G and F trisect $\overline{H E}$. In addition, $A H=A C=2$, and $A D=3$. What is the area of quadrilateral $W X Y Z$ shown in the figure?

$\begin{array}{ll}\text { (A) } \frac{1}{2} & \text { (B) } \frac{\sqrt{2}}{2}\end{array}$
(C) $\frac{\sqrt{3}}{2}$
(D) $\sqrt{2}$
(E) $\frac{2 \sqrt{3}}{3}$

[^0]
2. Table of Contents

Celebrating Marion's Theorem: Correlations, Construction and Connections

1. Introduction 1
2. Table of Contents 2
3. Marion's Theorem: Objectives 3
4. Part I - Marion's Theorem: Proof by Deductive Approach 5
5. 1 MARION'S THEOREM METHOD 1 5
1.2 MARION'S THEOREM METHOD 2 14
6. Part II - Marion's Theorem: Areas of Other Polygons in the Triangle 19
7. Part III - Marion's Theorem: Isosceles and Equilateral Triangles 23
8. 1 PART 3A EQUILATERAL TRIANGLE 24
9. 1.1 EQUILATERAL TRIANGLE: EQUAL SIDE LENGTHS OF HEXAGON 26
10. 11. 2 EQUILATERAL TRIANGLE: ACTUAL SIDE LENGTH OF HEXAGON29
1. 2. 3 EQUILATERAL TRIANGLE: ANGLES OF HEXAGON 31
1. 2 PART 3B ISOSCELES TRIANGLE 32
2. 2. 1 ISOSCELES TRIANGLE: SIDE LENGTHS OF HEXAGON 33
1. 2. 2 ISOSCELES TRIANGLE: EQUAL OPPOSITE ANGLES 37
1. Part IV - Extension on Marion's Theorem: Quadrilaterals 39
2. 1 PART 4A PARALLELOGRAM 40
3. 4. 1 PARALLELOGRAM: EQUAL OPPOSITE SIDES 41
1. 1.2 PARALLELOGRAM: EQUAL OPPOSITE ANGLES 44
2. 1.3 PARALLELOGRAM: AREA OF OCTAGON JKLMNOPI 45
3. 1.4 PARALLELOGRAM: TRISECTED SIDES 49
4. 5. 5 PARALLELOGRAM: GENERAL FORMULA FOR FINDING AREA OF OCTAGON 53
1. 2 PART 4B RHOMBUS 59
2. 2. 1 RHOMBUS: EQUAL OPPOSITE AND ADJACENT SIDES 60
1. 2. 2 RHOMBUS: RECTANGLE INSIDE OCTAGON 63
1. 3 PART 4C SQUARE 65
2. 4 PART 4D RECTANGLE 66
3. Summary 67
4. Reflection 68
5. References 70
6. Appendix 71
(1) Proof for 3. 1 EQUILATERAL TRIANGLE: $\triangle K L S$ IS EQUILATERAL 71
(2) Proof for 3. 2 ISOSCELES TRIANGLE: REFLECTIONAL AXIS OF TRIANGLE 72
(3) Proof for 4. 2 RHOMBUS: ANGLES OF OCTAGON 73
(4) Proof for 4. 1. 5 PARALLELOGRAM: POINTS OF OCTAGON LIE ON DIAGONALS 75
(5) Proof for 4. 3 PART 4C SQUARE 76
(5a) Proof for 4. 3.1 SQUARE: EQUAL SIDE LENGTHS OF OCTAGON 77
(5b) Proof for 4. 3. 2 SQUARE: 81
$\angle I J K=\angle K L M=\angle M N O=\angle O P I, \angle J K L=\angle L M N=\angle N O P=\angle P I J$ 81
(6) Proof for 4. 4 PART 4D RECTANGLE 82
(6a) Proof for 4. 4. 1 RECTANGLE: 83
$\angle K J P=\angle K L M=\angle \mathrm{MNO}=\angle O P I, \angle J I P=\angle N M L, \angle J K L=\angle P O N$ 83
(6b) Proof for 4. 4. 2 RECTANGLE: $J I=I P=M N=L M, J K=P O=K L=O N$ 88

3. Marion's Theorem: Objectives

Consider an arbitrary $\triangle A B C$, with D and E trisecting $B C, G$ and F trisecting $A C$, and H and I trisecting $A B$. When each vertex is joined to the trisection points on the opposite side, the area of the hexagon created inside the triangle is $\frac{1}{10}$ of $S_{\triangle A B C}$.

The report is separated into the following:
I. Marion's Theorem: Proof by Deductive Approach
II. Marion's Theorem: Areas of Other Polygons in the Triangle
III. Marion's Theorem: Isosceles and Equilateral Triangles
IV. Extension of Marion's Theorem: Quadrilaterals

8. Summary

In this report, we attempted to prove Marion's Theorem with a deductive approach. In Section 1, two methods were used to prove Marion's Theorem. In Sections 2 and 4, we aimed to find the correlation between the area of the hexagon and the area of the other regions in the triangle, as well as different properties of the octagon in the quadrilateral.

We also expanded on her discoveries by constructing variations of the original diagram, and attempted to prove the observations and special properties found, as shown in Section 3 and 4; the idea was extended to equilateral and isosceles triangles, and then to parallelograms, rhombuses, squares and rectangles. All the octagons formed in the middle had special angles and sides. We also managed to find the correlation between the number of equal parts a side of a parallelogram is divided into and the area of the octagon formed in the middle.

This project has connected the younger generation of mathematicians to the older generations. Although this all started by simply connecting lines together, we have achieved our goal at the end: "Celebrating Marion's Theorem: Correlation, Construction and Connection".

9. Reflection

Passion and Love: Developing an Interest in Geometry

From this maths project, we have challenged ourselves and expanded our knowledge beyond the textbook. The topic we chose for this project, Marion's Theorem and other related variations, have not only allowed us to put into practice the geometry skills we acquired during classes, but have also enriched our knowledge in geometry, and, most importantly, our interest and passion for mathematics. Our fascinating discoveries encouraged us to delve into geometry and we have truly experienced how intriguing the work of a mathematician is.

Through this project, we have taken our first glimpse into the beauty and elegance of geometry and mathematics.

Teamwork: Working Together in this Maths Project

Our project was a mix of individual work and collaboration. We divided work among ourselves but at the same time brainstormed solutions together. This was an effective approach to tackling problems and proofs in our project. Teamwork also motivated us in times when we faced obstacles and bottlenecks, and we helped each other out on different parts and had a lot of fun in the process, which greatly strengthened our bonds as friends.

COVID-19: Difficulties of Working Online

With the fifth wave of the pandemic and our project coming to an end, we look back on the beginning of the pandemic when we were forced to resort to online methods to collaborate and complete our project. Throughout this journey, we gained new knowledge on how to use online tools such as Geogebra to construct diagrams to better illustrate our ideas; we also discussed through Zoom meetings on long nights, which increased the efficiency of our work. Learning how to organise workload and communicate clearly was the main challenge for us. However, we soon developed a systematic approach to these problems by creating lists and weekly meetings to check on each others' progress. We were also very fortunate to have a great mentor teacher, who was always ready to give us feedback and pointers when we needed them.

The pandemic has not been easy for anyone, but we have adapted to the new normal. Our report reflects our hard work, flexibility and perseverance.

10. References

Art of Problem Solving, (2006). AMC 10A Problems/Problem 17. Retrieved from https://artofproblemsolving.com/wiki/index.php/2006_AMC_10A_Problems/Problem_17

[^0]: ${ }^{1}$ Art of Problem Solving. (2006). AMC 10A Problems/Problem 17. Retrieved from
 https://artofproblemsolving.com/wiki/index.php/2006_AMC_10A_Problems/Problem_17
 Problem 17, 2006 American Mathematical Competition (10A)

